Daniel Veronese-Paniagua, a sixth-year graduate student in the Millman Lab, recently published his first first-authorship as a preprint in bioRxiv. The study, titled Coxsackievirus B infection invokes unique cell-type specific responses in primary human pancreatic islets, sheds new light on the intricate mechanisms through which Coxsackievirus B3 (CVB) may trigger type 1 diabetes (T1D). The study was conducted by Veronese-Paniagua, Dr. Jeffrey Millman, Dr. Hubert Tse of the University of Kansas Medical Center, and their colleagues at Washington University School of Medicine and the University of Kansas Medical Center. It utilized single-cell RNA sequencing to uncover distinct responses within pancreatic islet cell types—specifically β, α, and ductal cells—following CVB infection.
CVB has long been suspected to play a role in the onset of T1D, an autoimmune condition in which the immune system attacks insulin-producing β cells in the pancreas. Veronese-Paniagua’s study provides crucial insights into how this virus induces transcriptional changes that disrupt cellular functions vital for maintaining glucose homeostasis. This preprint publication marks a significant milestone in advancing the understanding of the link between viral infections and the development of T1D, offering new avenues for clinical research and treatment development. It underscores the complex interplay between viral infections, cellular responses, and autoimmune diseases like T1D. As research continues to unravel these connections, there is hope for future treatments that could preserve pancreatic function and improve outcomes for individuals at risk of developing diabetes.
Veronese-Paniagua grew up in an underserved community and attended a high school with a limited science department.
He finds it “addicting” to discover new things in research. “[It’s addicting] to have a question and to find an answer that may fit your expectations, but it has more to it, it’s more complex than you thought it was. You expect the complexity, but sometimes the level of complexity is beyond your imagination.”
After earning his Bachelor of Arts in Biology from Cornell, he worked as a research technician at Washington University for two years, studying colorectal cancer in the Blair Madison Lab. This experience sparked his interest in stem cell biology. While Veronese-Paniagua initially wanted to move on from Washington University after his time in the Madison Lab, he later realized and appreciated the school’s strong student support and diversity, which made him feel more comfortable than other places he interviewed at. Veronese-Paniagua joined the Millman Lab in 2020 as a student in the Developmental, Regenerative, and Stem Cell Biology Program. He was attracted to the lab’s working dynamic as well as the translational research. “You can see the fruit from your seed grow during your own lifespan. We see that with Jeff’s (Millman) 2014 paper already in clinical trials less than 10 years later,” he said.
After graduation, Veronese-Paniagua plans to work in the private sector. He’s interested in working for a pharmaceutical or biotech company to develop tools that can reach patients within his lifetime. He says that he enjoys the concept of seeing the effects of his work. Further down the line, he envisions himself working in an administrative capacity, making scientific decisions within a company.
Veronese-Paniagua understands the importance of maintaining a healthy work-life balance and emphasizes the value of having hobbies and a social circle outside of science. One of his passions outside of the lab is practicing Brazilian Jiu-Jitsu. He has been practicing Jiu-Jitsu at Watson Martial Arts in St. Louis for seven years and says he loves the sport because of the way it slows down the world. “It makes you think a lot about what the movements you have to do against your opponent are. Although to a spectator, it may look fast paced, when you’re on the mats it kind of slows you down, slows your thinking down, and makes you forget about the world because all you’re thinking about is the moves you want to do. It’s a really easy way for me to forget about science,” he said. He also appreciates how the sport tests both his physical and mental abilities. “It’s one of those communities where you can continuously learn from people regardless of their background. I’ve gotten my butt handed to me by people that are in their sixties. And vice versa. I’ve beat people 100 pounds heavier than me. And you can’t do that in other sports for the most part because strength, power, height, age – all those factors come in. But Jiu-Jitsu’s one of those things where you have a little bit more control, and I really like that.”
Additionally, he is dedicated to supporting the younger scientific community, especially in underserved communities. He volunteers with WashU’s Teach Kids Science, a program that brings graduate students to schools and communities in St. Louis, particularly in underserved areas of the city, to provide talks and scientific demonstrations for students in grades K-12.
He finds joy in tutoring young scientists and helping them understand the opportunities available to them. “It’s really cool because I’ve spoken to some kids that really like science, but kind of like me when I was in high school, they don’t know what they can do with science.”
Read more about Veronese-Paniagua’s study in bioRxiv here.
Coxsackievirus B infection invokes unique cell-type specific responses in primary human pancreatic islets. Daniel A. Veronese-Paniagua, Diana C. Hernandez-Rincon, Jared P. Taylor, Hubert M. Tse, Jeffrey R. Millman bioRxiv 2024.07.23.604861; doi: https://doi.org/10.1101/2024.07.23.604861.